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Abstract— Object detection has made tremendous strides in
computer vision. Small object detection with appearance degra-
dation is a prominent challenge, especially for aerial observa-
tions. To collect sufficient positive/negative samples for heuristic
training, most object detectors preset region anchors in order
to calculate intersection-over-union (IoU) against the ground-
truth data. In this case, small objects are frequently abandoned
or mislabeled. In this article, we present an effective dynamic
enhancement anchor network (DEA-Net) to construct a novel
training sample generator. Different from the other state-of-the-
art (SOTA) techniques, the proposed network leverages a sample
discriminator to realize interactive sample screening between an
anchor-based unit and an anchor-free unit to generate eligible
samples. Besides, multi-task joint training with a conservative
anchor-based inference scheme enhances the performance of the
proposed model while reducing computational complexity. The
proposed scheme supports both oriented and horizontal object
detection tasks. Extensive experiments on two challenging aerial
benchmarks (i.e., Dataset of Object deTection in Aerial images
(DOTA) and HRSC2016) indicate that our method achieves SOTA
performance in accuracy with moderate inference speed and
computational overhead for training. On DOTA, our DEA-Net
which integrated with the baseline of RoI-transformer surpasses
the advanced method by 0.40% mean-average-precision (mAP)
for oriented object detection with a weaker backbone network
(ResNet-101 vs. ResNet-152) and 3.08% mAP for horizontal
object detection with the same backbone. Besides, our DEA-Net
which integrated with the baseline of ReDet achieves the SOTA
performance by 80.37%. On HRSC2016, it surpasses the previous
best model by 1.1% using only three horizontal anchors. The
source code and the training set are made publicly available at
https://github.com/QxGeng/DEA-Net.
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I. INTRODUCTION

OBJECT detection is one of the fundamental and challeng-
ing problems in computer vision. Tremendous successes

have been achieved on object detection with the development
of deep convolution neural networks (DCNNs) in recent
years. Different from the objects in natural scenes which are
often captured from horizontal perspectives, aerial images are
typically taken from a bird’s eye view at a high altitude,
suggesting that objects in aerial images usually are of a small
size and diverse orientations with complex background [1].
A large number of detectors [2]–[5] have been designed for
aerial observations, most of which are based on a two-stage
detector (e.g., fast R-CNN [6] and faster R-CNN [7]) or a
one-stage detector (e.g., RetinaNet [8] and you only look once
(YOLO) [9]).

Region anchors are designed as the regression references
and the classification candidates to predict the proposals in
two-stage detectors or final bounding boxes in one-stage
detectors. Most of the anchor-based detectors utilize a uniform
anchoring scheme, and then positive and negative samples are
selected through intersection-over-union (IoU) with ground
truth. For example, the anchor boxes with IoU > 0.5 are
treated as positive samples and IoU < 0.3 as negative
samples [7]. In practice, such a strategy may cause two main
problems.

1) Anchor quantization errors and noisy training samples:
We take faster-RCNN [7] as an example. If the base
anchor size is set to 32 and the IoU threshold is set
to 0.5, objects with area <322 × 0.5 (512 pixels) will
be excluded from the positive proposals. As shown
in Fig. 1(a), the anchor box (red) and the ground
truth (green) have a large quantization discrepancy.
This discrepancy will lead to much confusion for both
box localization and classification. On the other hand,
empirical evidence shows that objects with an area
<512 pixels occupy approximately 30% of an aerial
image of Dataset of Object deTection in Aerial images
(DOTA) [1], where inaccurate anchor boxes or misclas-
sification of the samples lead to unstable convergence of
the model.

2) Mismatch between the pyramid levels and the samples:
This is based on the consensus that upper feature maps
have more semantic information suitable for detect-
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Fig. 1. Comparison of anchor proposals. (a) and (c) Anchor-based
method (e.g., faster-RCNN [7]) and regression bounding boxes. (b) and
(d) Anchor-free method (e.g., FCOS [10]). Anchor-free regression bounding
boxes (yellow boxes) have better consistency in small object detection than the
anchor proposals (red boxes), but for large objects with large aspect ratios, the
anchor proposals have better consistency. Green boxes are the ground truth.

ing big instances, whereas lower feature maps have
more fine-grained details suitable for detecting small
instances. Integrated within a feature pyramid, large
anchor proposals are typically associated with upper
feature maps, and small anchor proposals are associated
with lower feature maps. Inaccurate bounding boxes
with large background areas would cause a mismatch
between the feature pyramid levels and the training
samples, largely affecting the model training. In other
words, the selected feature level to train each sample
may not be correct.

To deal with these issues, image feature pyramids with more
levels can be used to better detect small objects. Another
common solution is to enlarge the quantity of the anchors
with diverse sizes and aspect ratios. These two solutions have
evident drawbacks—both of them lead to significant computa-
tional overhead, especially when processing large-scale aerial
images or training the network with a heavy backbone.

As shown in Fig. 1(b), the regression bounding boxes in
an anchor-free detector (e.g., fully convolutional one-Stage
object detection (FCOS) [10]) can be potentially leveraged as
positive region proposals because they are free from anchor
quantization errors. On the other hand, compared with the
anchor-based detectors, the anchor-free detectors usually fail
to generate an accurate bounding box when the objects are of
a large size and an extreme aspect ratio [10]–[12], just like
the example shown in Fig. 1(d). Most anchor-based detectors
(including the baseline faster R-CNN) regress from the anchor
box with four offsets between the anchor box and the object
box, while FCOS regresses from one point with four distances
to the bound of the object. It means that for a positive sample,
the regression’s starting status of faster R-CNN is a box, while
FCOS is a point. The box itself contains prior of the shape,

Fig. 2. Architecture of our proposed DEA-Net for oriented object detec-
tion. The DEA head serves each level of the feature pyramid to generate
higher-quality training samples, including an anchor-based model, an anchor-
free model, and a sample discriminator. RoI transformer [2] processes the
horizontal and the oriented proposals.

and the regression is only the two small offset of X and Y
directions. In contrast, FCOS needs to independently return
the offsets of +/−X and Y , four directions, from a start point,
without any shape prior. The regression error in any direction
would greatly affect the shape of the box, especially for large
objects with a large aspect ratio. This observation has been
reported in [13].

For the anchor-based approaches, the anchor quantization
errors can be ignored for large objects. The anchor boxes are
designed to discretize all possible instance boxes into a finite
number of boxes with predefined locations, scales, and aspect
ratios. We need more anchors with a smaller size and denser
layouts or more angles in arbitrary-oriented detection to cover
small objects, which may lead to extensive computation cost
and imbalanced problems of positive and negative samples.
Achieving spatial alignment with small ground-truth objects is
challenging and prone to the miss of the corresponding positive
anchors based on this strategy.

Inspired by the above observations, in this article, we pro-
pose an effective dynamic enhancement anchor network
(DEA-Net) to enhance the learning of small objects effi-
ciently. The overall architecture is shown in Fig. 2. The
DEA head serves each level of the feature pyramid consisting
of an anchor-based module, an anchor-free module, and a
sample discriminator. The sample discriminator merges the
complementary anchor-based and the anchor-free proposals
and generates representative and informative samples with
accurate locations and sizes, while avoiding positive/negative
confusion. Besides, multi-task joint training with a conser-
vative anchor-based inference scheme enhances the perfor-
mance of the model while avoiding complexity augmentation.
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We conduct extensive experiments on both oriented and
horizontal object detection tasks. Experiments on the aerial
image benchmarks DOTA [1] and HRSC2016 [14] show that
our proposed DEA-Net makes substantial improvement, com-
pared to the baseline methods, and achieves state-of-the-art
(SOTA) performance in accuracy [i.e., 80.37% mean-average-
precision (mAP) (+0.14%) and 90.56% mAP (+1.10%)]
for oriented object detection tasks. Besides, experiments on
DOTA [1] for horizontal object detection achieves SOTA per-
formance in accuracy with 78.43% mAP (+3.08%). By com-
bining the anchor-based and anchor-free branch efficiently,
our method maintains a fair inference speed and training
computational overhead.

To the best of our knowledge, this is the first time to simul-
taneously consider the impact of both the object’s scale and
aspect ratio and then distinguish and process them separately
for training. In summary, our main contributions consist of:
1) an effective sample generator based on DEA head to
enhance the performance of detecting small objects by com-
bining the advantages of anchor-based and anchor-free models
and 2) a novel and robust DEA-Net, which can achieve
the start-of-the-art oriented and horizontal object detection
performance in aerial images.

The remainder of this article is organized as follows.
In Section II, we discuss the related work. In Section III,
we describe the proposed method in detail. The experimental
results are presented and discussed in Section IV, and the
conclusions and future work are given in Section V.

II. RELATED WORK

A. Anchor-Based and Anchor-Free Models

The current mainstream detectors can be divided into two
categories: 1) anchor-based methods [6]–[9] and 2) anchor-
free methods [10]–[12]. In anchor-based methods, the network
is trained to regress the offsets between the anchors and
ground-truth bounding boxes. However, these methods take
advantages of the task-oriented settings of anchors, leading
to complex parameter tuning. Moreover, since the scales and
aspect ratios of anchors are fixed, it has the difficulty to
handle the objects with large shape variations, especially
for small objects. Anchor-free methods directly regress the
bounding box without using preset anchors. They usually have
a streamlined network structure due to discarding of the dense
anchors. However, they also meet difficulties in learning large
variations of the bounding boxes without prior knowledge.
DEtection TRansformer (DETR) [15] utilizes self-attention to
build a novel detection architecture, whose detection precision
can compete against those of the two-stage object detectors,
but it has the weakness in detecting small objects with high
computational overheads in the published literature. Due to
the dilemma of the above methods, an emerging line of work
attempts to design a detector by combining anchor-based
and anchor-free methods. GA-RPN [16] constructs a region
proposal network in an anchor-free manner to predict the pro-
posals for faster R-CNN. Feature selective anchor-free module
(FSAF) [17] attaches an anchor-free module at each feature
pyramid level to select appropriate features of each object for

RetinaNet. SFace [18] attaches an anchor-free model to an
anchor-based detector and combines the outputs of two models
to improve the performance of the detector. Different from
the other state of the arts such as [16]–[18], we focus on the
collaboration of anchor-based and anchor-free methods from
the perspective of sample discrimination. It makes interactive
sample screening invulnerable to the diversity of the scale
distributions.

B. Improved Anchor-Based Detection Models

The recent improvement of the anchor selection strategies
mainly focuses on two aspects as follows.

1) Weight the predicted anchor boxes to distinguish the
potential importance and quality differences. MetaAn-
chor [19] and soft anchor-point object detection
(SAPD) [20] belong to this type. MetaAnchor directly
weights the generated anchors, while SAPD leverages
both soft-weighted anchor points and soft-selected pyra-
mid levels.

2) Propose a refining anchor box assignment strategy. For
example, dynamic anchor feature selection (DAFS) [21]
uses an anchor refinement module (ARM) to adjust the
locations and sizes of anchors and filter out negative
anchors and then select new pixels in a feature map for
each refined anchor.

Ming et al. [4] define the dynamic anchor with a match-
ing degree to evaluate both spatial and feature alignment
for anchor assignment. Nevertheless, all the above methods
ignore the influence of the object’s scale and aspect ratio on
anchor assignment. In remote-sensing scenarios, for example,
we observe that small objects are frequently abandoned or
mislabeled due to the predefined anchor sampling interval
and the IoU rule, which could potentially destroy the original
sample distribution in the feature space. On the other hand,
anchor-free-based detectors often fail to generate an accurate
bounding box for large objects with a large aspect ratio.
Different from [4], [19]–[21], the significant differences of our
method are: 1) consider the impact of both the object’s scale
and aspect ratio simultaneously and 2) distinguish between
different scales and aspect ratios and then use appropriate
strategies to process them separately. The anchor-free module
is utilized to generate more positive samples of small objects
which are ignored in the anchor-based module. For some
objects of a large size and extreme aspect ratios, we preserve
the anchors in the anchor-based model which have higher IoUs
as the positive samples. Compared with the existing methods
(weighting the anchor [19], [20] or refinement assignment
strategy [4], [21]), our idea has also been experimentally
proved to be effective. In particular, it is more suitable for
object detection in remote-sensing images, because in remote-
sensing images, small-sized (such as vehicles) and large-sized
objects with extreme aspect ratios (such as ports, bridges)
are very common. The work adaptive training sample selec-
tion (ATSS) [22] is a comparative analysis of the Retinanet
and FCOS, which proposes a general training strategy to serve
them separately, so this method naturally does not increase
any overhead. In contrast, our method involves model design,
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a training scheme (relies on a sample discriminator for inter-
active sample screening and with multi-task joint training),
and an inference scheme (a conservative anchor-based scheme
to freezing the anchor-free branch to suppress computational
complexity). Such a comprehensive scheme improves the
performance in remote-sensing scenarios.

C. Object Detection in Aerial Images

Object detection in aerial images often faces a large
number of small objects with arbitrary orientations in com-
plex environments. Detecting objects with oriented bound-
ing boxes (OBBs) is a non-trivial extension of horizontal
object detection, which are mostly built on anchor-based
detectors [2], [23]–[25]. R3Det [26] adopts cascade regression
to refine the predicted boxes. DCL [5] utilizes a densely
coded label encoding mechanism for angle classification.
SCRDet [3] improves the performance of small objects by
reducing the anchor strides to preset smaller and more anchors,
which incurs extensive computational costs. Dynamic anchor
learning (DAL) [4] utilizes a comprehensive scheme for
spatial alignment, feature alignment ability, and regression
uncertainty for label assignment. RoI transformer [2] applies
spatial transformations on RoIs and learn the transformation
parameters under the supervision of OBB annotations, which
is with lightweight and can be easily embedded into detectors
for oriented object detection. In our work, our method is
based on the RoI transformer to deal with OBB, and we
constrain random discarding and positive/negative confusion
of small objects and produce qualified training samples with
accurate locations and scopes without introducing complicated
modules. Our experiments also confirm that it is unnecessary
to preset a large number of specially designed anchors with
large computational overheads.

III. PROPOSED METHOD

In this section, we introduce the technical details of our pro-
posed DEA-Net and instantiate our DEA module by showing
how to apply the scheme to the object detectors with a feature
pyramid for object detection in aerial images. Specifically,
we first introduce the details of our proposed DEA module
and then introduce the sample discriminator which facilitates
the learning of small objects. Then, we show the details of
our overall network architecture. Finally, we show how to join
training with inference of our DEA-Net.

A. Dynamic Enhancement Anchor

In the literature, anchor-based methods find it difficult to
fully learn small objects by selecting positive and negative
samples for training through the examination of IoU overlap.
As shown in Fig. 3, in the anchor-based module, if the IoU
between the preset anchors and the ground-truth boxes of small
objects is lower than the threshold of the positive samples, the
samples are treated as discarded samples (i.e., −1 as sample
label) or negative samples (i.e., 0 as sample label). The training
of anchor-based detectors for small objects is not sufficient
because of the lack of positive samples, severely affecting the
detection performance.

As aforementioned, the regression bounding boxes in the
anchor-free detector usually have higher IoU for the small

Fig. 3. DEA module to provide better positive samples of small objects.
Specifically, in the original anchor-based module, the preset anchors are
assigned as negative samples (0) or discarded samples (−1). However, our
DEA module can generate high-quality bounding boxes of higher IoU,
assigned as positive samples (1) for better training the network.

objects than the anchor-based detector. However, for some
objects of a large size and extreme aspect ratios, anchor-free
detectors may have poor performance. Therefore, instead of
utilizing the anchor-free method to replace the anchor-based
method to generate samples for training, we combine their
advantages to deal with positive sample selection of different
scales.

We construct an anchor-free sample generation module that
shares the feature pyramid with the anchor-based module and
integrate it with an anchor-based detector. Via an interactive
sample screening procedure in the sample discriminator, the
anchor-free module is utilized to generate more positive sam-
ples of small objects which are ignored in the anchor-based
module. For some objects of a large size and extreme aspect
ratios, we preserve the anchors in the anchor-based module
which have higher IoUs as the positive samples.

B. Interactive Sample Screening

Current studies [10], [18] have reported that the designed
anchor boxes are the key to successful anchor-based detectors,
and the detection performance is sensitive to the size, aspect
ratio, and the number of the anchor boxes. Therefore, the
anchors in these anchor-based detectors must be carefully
tuned for each specific task on different datasets. For example,
to deal with the challenge of small object detection, one
needs to design smaller anchors beforehand and densely locate
them on the input image. This handling leads to extensive
computational costs and the imbalanced problem. Therefore,
our proposed dynamic enhancement method aims to use the
preset number of the preset anchors to improve the detection
performance of small objects with less computational cost.
In our solution, the DEA head serves each level of the feature
pyramid consisting of an anchor-based branch, an anchor-
free branch (DEA branch), and a sample discriminator to
realize interactive sample screening. More detailed, the sample
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Algorithm 1 Sample Discriminator
Input:

G is the set of ground-truth boxes
P is the set of feature pyramid levels
A is the set of anchor boxes of the RPN outputs
V is the set of predicted vector of anchor-free branch
TP is the threshold of positive samples
TN is the threshold of negative samples

Output:
SE is the set of enhancement samples
SP is the set of positive samples
SN is the set of negative samples

1: for each ground-truth box g ∈ G do
2: for each feature pyramid level pi ∈ P do
3: decoder predicted vector V to bounding-boxes B:

B = Decoder(V);
4: end for
5: calculate the Intersection-over-Union (IoU) between g

and b j ∈ B:
IBg = IoU(b j , g);

6: calculate the Intersection-over-Union (IoU) between g
and ai ∈ A:
IAg = IoU(ai , g);

7: if IB j
g ≥ TP and IB j

g ≥ IAi
g then

8: SE = SE
⋃
B j

g

9: else if IAi
g ≥ TP and IAi

g ≥ IB j
g then

10: SP = SP
⋃
Ai

g

11: else if IAi
g ≤ TN then

12: SN = SN
⋃
Ai

g
13: end if
14: end for
15: SP = SP

⋃
SE

16: return SE , SP , SN ;

discriminator merges the complementary anchor-based and
the anchor-free proposals and generates representative and
informative samples with accurate locations and sizes, while
avoiding positive/negative confusion.

Algorithm 1 describes how the proposed sample discrimi-
nator works with an input image. For each ground-truth box
g = [x, y, w, h, c] on the input image, where (x, y) is the
left-top corner of the box, (w, h) are the box width and height,
respectively, and c is the class label, our anchor-free branch
will generate prediction vectors

V = [vm,n
t , vm,n

l , vm,n
b , vm,n

r , cm,n] (1)

where vm,n
t , vm,n

l , vm,n
b , and vm,n

r are the distances between the
current pixel location (m, n) and the top, left, bottom, and right
boundaries of the box, respectively, and cm,n is the prediction
class label. We first decode the prediction vectors V to form
the bounding boxes B

B = [xm,n, ym,n, wm,n, hm,n, cm,n] (2)

where xm,n = m − vm,n
l , ym,n = n − vm,n

t , w = vm,n
l + vm,n

r ,
and h = vm,n

t + vm,n
b .

Fig. 4. IoU distributions of the baseline (faster R-CNN [7]) and our DEA-
net. The x-axis represents the IoU between the samples and the ground-truth
boxes. The y-axis represents the average number of samples on each image.

Then, we calculate the IoU between the regressed bounding
boxes B and the ground-truth g, labeled as IBg, and the IoU
between the anchors of the RPN output in the anchor-based
module A and the ground-truth g, labeled as IAg. Afterward,
we select samples as follows:

(
IB j

g ≥ IAi
g

) ∩ (
IB j

g ≥ TP
)

(3)

where TP is the threshold of the positive samples (i.e., 0.5 in
this article). It denotes that the bounding box in the anchor-free
model have better consistency than the anchor proposal, and
we assign box B j

g to the enhanced samples SE with
(
IAi

g ≥ TP
) ∩ (

IAi
g ≥ IB j

g

)
. (4)

We assign anchor Ai
g as positive samples SP . If we have

IAi
g ≤ TN (5)

where TN is the threshold of the negative samples (i.e., 0.3 in
this article), we assign anchors Ai

g as negative samples SN .
Finally, we add the enhancement samples SE to the positive
samples SP .

The threshold of positive and negative samples affects the
accuracy of the detection. Because if the threshold is higher,
the numbers of positive samples will decrease. If the threshold
is lower, the quality of the samples will decrease. We keep
this hyperparameter that is widely used in the baseline just
like faster R-CNN, and we find that doing so would poten-
tially cause the problem of insufficient positive samples. The
introduction of DEA alleviates the above-mentioned risks, and
it directly and independently generates more qualified positive
samples. As shown in Fig. 4, we study the IoU distributions of
the samples generated by faster R-CNN [7] and our DEA-net.
Statistics shows that our DEA network provides more positive
samples with higher IoUs compared with the original anchor-
based detector.

In our method, the positive samples dynamically generated
by the DEA module are all horizontal bounding box (HBB),
which are the same as the anchor preset in the anchor-
based branch. Then, we leverage a sample discriminator to
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realize interactive sample screening between the anchor-based
branch and DEA branch to generate eligible samples. Finally,
we utilize RoI-transformer [2] to obtain the feature of rotated
objects.

C. Network Architecture

We build a DEA-Net for both oriented and horizontal
object detection tasks in aerial images. Fig. 2 illustrates
the overall architecture of our DEA module integrated with
faster RCNN [7] and RoI-transformer [2] for oriented object
detection. We deploy ResNet [27] as the backbone, which has
been pre-trained on the ImageNet [28]. Then, we construct
a multi-scale feature pyramid [29] in the top-down pathway
from the backbone network with levels from P2 to P6 and
Pi has 1/2i resolution of the input image. Then, we construct
a DEA head to Pi , which contains the anchor-based module
and our proposed DEA module. We construct the anchor-based
module following the technique reported in [7], including the
RPN head network to generate horizontal region proposals.

For the DEA module, we construct an anchor-free module
following the approach shown in [10]. We add four convolu-
tional layers after the feature maps Pi created by the standard
feature pyramid network (FPN) for classification, centraliza-
tion, and regression. We decode the prediction vectors of the
anchor-free module to form bounding boxes and then we select
better positive samples from the two modules through the sam-
ple discriminator. Finally, for the task of oriented object detec-
tion, we build the rotated head inspired by RoI-transformer [2]
which transforms the horizontal proposals to the rotated
ones for arbitrary-oriented detection and a standard faster
R-CNN [7] is used for horizontal object detection. The anchor-
free and anchor-based modules work jointly in a multi-task
style and share the features at each pyramid level.

A recent work for improving one-stage detectors is to intro-
duce an individual prediction branch to estimate the quality of
localization, where the predicted quality facilitates the clas-
sification to improve detection performance [30]. The authors
compared IoU-branch and centerness-branch and believed that
IoU-branch performs consistently better than centerness as a
measurement of localization quality. The convincing reason
is that centerness scores are much smaller than IoU scores,
which causes the final scores of bounding boxes are potentially
small and then removed by non-maximum suppression (NMS).
In our method, we utilize DEA-branch (an anchor-free branch
with centerness loss) to assist the training process of the
anchor-based detector to generate eligible training sample
according to the ground-truth sample rather than generating
the final output score. This avoids the divergence of the two
branches in the inference stage. We introduce centerness loss
as a part of loss for training the DEA branch, and we select
samples based on the IoU between regressed bounding boxes
and the ground truth, not based on the centerness score.

D. Training and Inference

1) Multi-Task Joint Training: Integrated with faster
RCNN [7], our DEA module is trained jointly with the
anchor-based module in a multi-task style, as shown in Fig. 2.

We define Lab as the total loss of the anchor-based module, and
Laf as the total loss of the anchor-free module. We combine
the losses from the anchor-based and anchor-free modules as
the loss of the entire network. Then, the total optimization loss
for the whole network is

L = Lab + Laf. (6)

For the multi-task loss in the anchor-based detection mod-
ule, following [7], we optimize the target of the detection by
regressing anchor boxes. The loss function for each anchor
can be formulated as

Lab({pi}, {ti}) = Lab_cls
(

pi , p∗
i

) + p∗
i Lab_reg

(
ti , t∗

i

)
(7)

where the classification loss Lab_cls is the cross entropy loss,
pi is the predicted probability of anchor i being an object,
and p∗

i represents its ground-truth label ( p∗
i = 1 for positive

samples and p∗
i = 0 for negative samples). The regression loss

Lab_reg is smooth L1 loss [6], ti is the vector of the predicted
box, and t∗

i represents the ground-truth box.
For the anchor-free module, following [10], the loss function

for each location can be formulated as

Laf({pm,n}, {tm,n}) = Laf_cls
(

pm,n, p∗
m,n

)

+1{p∗
m,n>0}Laf_reg

(
tm,n, t∗

m,n

)

+1{p∗
m,n>0}Laf_center

(
tm,n, t∗

m,n

)
(8)

where classification loss Laf_cls is focal loss [8], pm,n is the
prediction of class labels, and p∗

m,n represents the ground-truth
label. The regression loss Laf_reg is IoU loss [31]. 1{p∗

m,n>0} is
the indicator function, being 1 if p∗

m,n > 0 and 0 otherwise.
tm,n is a vector of the predicted box and t∗

m,n represents the
ground truth. The centerness loss Laf_center is the cross entropy
loss.

2) Inference With Anchor-Based Module: Our DEA-Net uti-
lizes the anchor-free and the anchor-based modules to jointly
train the network to strengthen its feature representation ability
and provide high-quality samples to the training task. During
the inference stage, we feed the images to the anchor-based
module whilst freezing the anchor-free module. This is mainly
due to the fact that the anchor-free module has relatively
poor consistency in locating bounding boxes, especially for
the objects of a large aspect ratio. Freezing the anchor-free
module could also avoid complicated fusion computation to
control the computational overhead for the inference. We use
the confidence score 0.05 and set the threshold of NMS to be
0.1 to generate the final detection results. We demonstrate the
effectiveness of the proposed scheme in the following ablation
experiments.

3) Discussion: In essence, our method is still anchor-based
two-stage detection pipeline. One critical problem we solve is
the “anchor over-quantization” problem, which would cause
small targets to be ignored in the anchor laying process,
thereby breaking the original statistical distribution of train-
ing samples and finally affecting the performance of the
trained model. Instead of increasing the anchor laying density
(which would greatly increase training overhead), we design
a sample discriminator in the training stage. Unlike the solu-
tions that combine anchor-based and anchor-free methods to
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detect + fusion, the proposed sample discriminator (as shown
in Fig. 2 and Algorithm 1) comprehensively evaluates the
consistency of anchor boxes (produced in the anchor-based
branch) and the inferred box produced by the DEA branch
(an anchor-free branch) with ground truth. As demonstrated
in Fig. 3, small targets that are split into negative samples
by anchor boxes are completely retained in the DEA module,
free from the quantization errors of anchors. In the sample
discriminator, these target regions located by the DEA module
are further regarded as positive samples to compensate for
quantization errors in the anchor-based branch, as shown in
Fig. 4.

IV. EXPERIMENTAL WORK

A. Settings

1) Datasets: DOTA [1] is one of the large datasets for object
detection in aerial images with both OBB and HBB annota-
tions. It contains 2806 aerial images with 188 282 annotated
instances from different sensors and platforms. The image
size ranges from around 800 × 800 to 4000 × 4000 pixels
and contains objects exhibiting in a wide variety of scales,
orientations, and shapes. DOTA contains 15 object categories,
including plane (PL), baseball diamond (BD), bridge (BR),
ground track field (GTF), small vehicle (SV), large vehicle
(LV), ship (SH), tennis court (TC), basketball court (BC),
storage tank (ST), soccer-ball field (SBF), roundabout (RA),
harbor (HA), swimming pool (SP), and helicopter (HC). In our
experiments, following [1], [3], three-sixths of the original
images are randomly selected to form the training set, one-
sixth as the validation set, and two-sixths as the testing set.
HRSC2016 [14] is a challenging dataset for ship detection
in aerial images with large aspect ratios and arbitrary ori-
entations. These images were collected from Google Earth,
which contain 1061 images and more than 20 categories of
ships in various appearances. The image size ranges from
300 × 300 to 1500 × 900. In our work, following [14],
the training, validation, and test sets include 436, 181, and
444 images, respectively. For HRSC2016, only oriented object
detection can be carried out.

2) Image Size: For DOTA and HRSC2016, we generate a
series of 1024 × 1024 patches from the original images with
a stride of 824 for training, validation, and testing.

3) Baseline Setup: We use the standard two-stage detector
faster R-CNN [7] as the baseline. It utilizes ResNet-101 as
backbone. FPN [29] is adopted to construct a feature pyramid.
Predefined horizontal anchors are set on each feature level, i.e.,
P2–P6. Here, we do not use any rotation anchor. For oriented
object detection, we add the rotated head developed in RoI-
transformer [2] which transforms the horizontal proposals to
the rotated ones. For a fair comparison, all the experimental
data and parameter settings are strictly consistent as those
reported in [1], [2], and [14].

To verify the universality of our approach, we also
embed our approach to ReDet [32] which incorporates
rotation-equivariant networks into the detector to extract
rotation-equivariant features. It uses ReResNet-50 [32] as
backbone, and FPN [29] is adopted to construct a feature

pyramid. And then it also adds the rotated head developed
in RoI-transformer [2] for arbitrary-oriented detection.

4) Hyper-Parameters: For the hyper-parameters, follow-
ing [2], [4], in DOTA and HRSC2016, only three horizontal
anchors are set with the aspect ratios of {1/2, 1, 2}, the base
anchor scale is set as {82}, and the anchor strides of each level
of the feature pyramid are set to be {4, 8, 16, 32, 64}.

For the positive and negative sample selection, follow-
ing [2], [7], we set the threshold of the positive samples
as TP = 0.5 and the threshold of the negative samples as
TN = 0.3.

We set γ = 2 and α = 0.25 for the focal loss in Laf_cls.
5) Implementation Details: In order to verify the effective-

ness of our method, we perform ablation studies on the DOTA
dataset, and avoid utilizing any bells-and-whistles training
strategy and data augmentation in the ablation study.

For the peer comparison on DOTA and HRSC2016,
like [2]–[4], we only conduct rotation augmentation using
4 angles (0, 90, 180, 270) to simply avoid the imbalance
between different categories.

Stochastic gradient descent is used as the optimizer. The
initial learning rate is set to 0.005 and divided by ten at each
decay step. Weight decay and momentum are set to 0.0001 and
0.9, respectively. Following [1], [14], the total iterations for
DOTA and HRSC2016 are 80 and 20 k, respectively. We train
the models on RTX 2080Ti with a batch size of 1.

6) Evaluation and Metrics: Following [1], the standard
mAP is used as the primary evaluation metric for accu-
racy. Moreover, to verify the model efficiency, the model
parameters (#Params) and giga floating-point operations per
second (GFLOPs)/frames/s are also taken into consideration.
The results of DOTA reported in our work are obtained by
submitting our predictions to the official DOTA evaluation
server.1

B. Ablation Study

Our ablation study is carried out on DOTA [1] for ori-
ented object detection with ResNet-101 [27], which aims to:
1) verify the effectiveness of our method on different backbone
networks; 2) verify the effectiveness of our proposed units
integrated with the baseline; and 3) verify the effectiveness of
the inference schemes.

1) Effectiveness and Efficiency on Different Backbones:
In Table I, we show the experimental results of different
backbone networks with our proposed units on the test set of
DOTA. We use mAP to examine our proposed module with
ResNet-50, ResNet-101, and ResNet-152, respectively. Note
that for aerial image, the object detection using OBB is much
more important but more difficult than using HBB, that is why
in Table I we perform ablation study on OBB task rather than
HBB. We observe that adding our proposed module to the
backbone increases mAP by 0.52%, 0.90%, and 0.43%.

In Table II, we report the model #Params and
GFLOPs/frames/s for the evaluation of model efficiency. It is
clear that using our proposed DEA module increases a little
computational cost. For example, average increases on these

1https://captain-whu.github.io/DOTA/
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TABLE I

EFFECTIVENESS OF OUR PROPOSED METHOD WITH DIFFERENT BACKBONE NETWORKS ON THE TEST SET OF DOTA [1] FOR ORIENTED OBJECT
DETECTION. “+DEA” INDICATES THE IMPLEMENTATION OF OUR PROPOSED MODULE ON THE BACKBONE NETWORKS

three backbones are around 4.47 M model #Params with
around 13.91 GFLOPs, and with around 2 frames/s reduction.
Considering the model performance and the amount of
the calculation, in the following experiments, we select
ResNet-101 as our backbone network.

2) Effectiveness of the Proposed Units: In Table I, we show
the performance of our DEA module integrated with three
backbones for 15 categories of DOTA. We witness that our
module can bring improvements for the bounding box mAP
by 0.90%. We can observe that our module has large improve-
ments on small objects. Specifically, for small vehicles (SVs),
our method can increase AP by 4.19%, and for storage tank
(ST), AP can be increased by 5.85%.

3) Efficiency of Our Proposed Units: We also compare
the efficiency and effectiveness of our proposed method
against those of the method of presetting more small anchors,
as shown in Table III. The hyper-parameters settings of the
comparison experiment are as follows.

1) The base anchor scale of the baseline and our method
is {82}, and we set the base anchor scale of the method
of presetting more small anchors as {22, 42, 82}.

2) The aspect ratios of our method and the method of
presetting more small anchors are both {1/2, 1, 2}.

3) The anchor strides of each feature map of the two
methods are both {4, 8, 16, 32, 64}.

It is clear that the method of presetting more anchors increases
more computational cost than the proposed method: the
GFLOPs increase of 21.67 (+Anchor) versus 13.91 (+DEA),
with the frames/s reduction of 3.2 (+Anchor) versus 2.1
(+DEA). This is because in the method of presetting more
anchors, the number of anchors has tripled and these anchors
would participate in the calculation of the HBBs and the
rotated bounding boxes. In terms of the performance of the
two methods, the method of presetting more anchors would
indeed improve the performance of some small objects (e.g.,
small vehicles). Our method has more improvements on small
objects, because our DEA module can dynamically generate
positive samples which match objects better.

4) Effectiveness of the Inference Schemes: We also com-
pare the effectiveness of different inference schemes on
DOTA for horizontal object detection after having trained
the anchor-based and anchor-free baselines with our proposed
method, as shown in Table IV. Compared with the two
baselines, our DEA-Net of freezing the anchor-free module
can increase mAP by 0.96% and 6.40%. When we fuse
the outputs of the anchor-based and anchor-free modules,

TABLE II

EFFICIENCY OF OUR PROPOSED METHOD WITH DIFFERENT BACKBONE
NETWORKS ON THE TEST SET OF DOTA [1] FOR ORIENTED OBJECT

DETECTION. “+DEA” INDICATES THE IMPLEMENTATION OF OUR

PROPOSED MODULE ON THE BACKBONE NETWORKS

mAP can have a minor improvement (0.96% vs. 1.07% and
6.40% vs. 6.51%), compared with the former. Meanwhile,
fusing the two modules for inference, the inference speed
becomes clearly slower (10.8 vs. 6.2 frames/s). That is why
after having trained the DEA-net, we freeze the anchor-free
branch and only utilize the anchor-based module for inference.

5) Visualizations: We show some of the visual comparisons
for oriented object detection between the baseline and the
proposed method in Fig. 5. The proposed method achieves
notably better precision for small object detection, such as
small vehicles, storage tanks, ships, and airplanes.

C. Comparisons With State-of-the-Arts

1) Results on DOTA: We compare the proposed approach
with some SOTA methods on the test set of DOTA,
as shown in Table V. When our approach integrated with
RoI-transformer [2], our DEA-Net achieves 77.77% mAP for
oriented object detection and 78.43% mAP for horizontal
object detection and outperforms many advanced methods.
Of these 15 categories, DEA-Net ranks at the top for four
categories for oriented object detection and ten categories for
horizontal object detection. Moreover, DEA-Net surpasses the
advanced method by 0.40 mAP for oriented object detection
with a weaker backbone network (ResNet-101 vs. ResNet-152)
and 3.08 mAP for horizontal object detection with the same
backbone. Visualization results on the test set of DOTA are
shown in Fig. 6. DEA-Net can accurately predict the categories
and have satisfactory performance on small objects, such as
small vehicles, storage tanks, and ships.

We also compare the proposed approach with some newest
methods on the test set of DOTA, as shown in Table VI.
To verify the universality of our approach, we embed our
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TABLE III

COMPARISON OF EFFICIENCY BETWEEN OUR PROPOSED METHOD AND THE METHOD OF PRESET MORE SMALL ANCHORS ON DOTA [1] FOR
ORIENTED OBJECT DETECTION. “BASELINE” INDICATES THE FASTER RCNN WITH THE BACKBONE OF RESNET-101. “+ANCHOR” INDICATES

THE IMPLEMENTATION OF MORE SMALL ANCHORS ON THE BASELINE NETWORKS. “+DEA” INDICATES THE IMPLEMENTATION OF OUR

PROPOSED MODULE ON THE BASELINE NETWORKS

TABLE IV

EFFECTIVENESS OF DIFFERENT INFERENCE SCHEMES WITH OUR DEA-NET ON DOTA [1] FOR HORIZONTAL

OBJECT DETECTION IN AERIAL IMAGES. RESNET-101 [27] IS THE BACKBONE

TABLE V

COMPARISONS WITH OTHER SOTA METHODS ON THE TEST SET OF DOTA [1] FOR BOTH ORIENTED AND HORIZONTAL OBJECT DETECTION IN AERIAL

IMAGES. “OURS” MEANS THE IMPLEMENTATION OF THE DEA MODULE ON THE BASELINE MODEL. “R-” IN THE BACKBONE COLUMN DENOTES

RESNET [27], AND “H-” DENOTES THE HOURGLASS NETWORK [42]

TABLE VI

COMPARISONS WITH SOME CURRENT SOTA METHODS ON THE TEST SET OF DOTA [1] FOR ORIENTED OBJECT DETECTION IN AERIAL IMAGES.
“OURS” MEANS THE IMPLEMENTATION OF THE DEA MODULE ON THE BASELINE MODEL. “R-” IN THE BACKBONE COLUMN DENOTES

RESNET [27], AND “RER-” DENOTES ROTATION-EQUIVARIANT RESNET [32]

approach to one of these current detectors ReDet [32], which
is a SOTA rotation detector that explicitly encodes rotation
equivariance and rotation invariance. We integrate our DEA

module with ReDet and conduct data augmentation following
the way in [32] (i.e., multi-scale data and random rotation), our
method achieves 80.37% mAP for oriented object detection,
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Fig. 5. Comparison against the baseline (faster RCNN [7] + RoI-transformer [2]) on DOTA [1] for oriented object detection with ResNet-101 [27]. Blue boxes
indicate the results of the baseline and pink boxes are the results of our proposed DEA-Net.

Fig. 6. Visualization results for oriented object detection on the test set of DOTA [1].

and of these 15 categories, it ranks at the top for five
categories.

2) Results on HRSC2016: The comparisons with the other
SOTA methods on the test set of HRSC2016 [14] are shown in
Table VII. We can observe that our method achieves the SOTA
performance in mAP by 90.56%, which surpasses the previous
best model by 1.1%. Particularly, in our experiments, our
DEA-Net uses only three horizontal anchors with the aspect
ratios of {1/2, 1, 2}, but outperforms the other frameworks
with a large number of anchors. Our proposed method also

achieves better precision for objects with a large aspect ratio.
The experiments show that it is critical to effectively utilize the
predefined anchors and select high-quality samples where our
DEA module can regress the bounding boxes at the locations
of the objects without presetting a large number of rotated
anchors.

3) Discussion: The object detection using OBB is much
more difficult than using HBB. Tables V and VII also
support this phenomenon. In Table V, for OBB task, the
proposed methods outperform SOTA by 0.4% but for HBB it
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TABLE VII

COMPARISONS WITH OTHER SOTA METHODS ON THE TEST SET OF
HRSC2016 [14] FOR ORIENTED OBJECT DETECTION IN AERIAL

IMAGES. “R-” IN THE BACKBONE COLUMN DENOTES THE

RESNET [27], AND “V-” DENOTES THE VGG NETWORK [48].
MAP IS OBTAINED ON THE VOC 2007

EVALUATION METRIC

Fig. 7. Some failed visualized comparisons of baseline and our method.
The figures with blue boxes are the results of the baseline (faster R-CNN +
RoI-transformer) and pink boxes are the results of the proposed DEA-Net.

outperforms SOTA by 3.08%. In Tables V and VII, we can also
find that, for OBB task, recent SOTA method can have only
<1% gain compared with the previous state of the art meth-
ods, for example, R3Det-DCL [5] (International Conference
on Computer Vision and Pattern Recogintion (CVPR) 2021)
77.37% versus DAL [4] (the Association for the Advance of
Artificial Intelligence (AAAI) 2021) 76.95% on DOTA.

We also list some failed visualization comparisons of base-
line and our method, as shown in Fig. 7. The results show that
our method, similar to the baseline, cannot generate accurate
bounding boxes when detecting objects with extreme aspect
ratios (e.g., harbor). This may be because the DEA module fail
to generate accurate positive samples when the objects are of
a large size and an extreme aspect ratio, while the anchor-
based branch (e.g., the baseline) also cannot regress accurate
bounding boxes when the aspect ratio of preset anchors are
not match the objects of extreme aspect ratio. We show more
visual comparisons of the results in the appendix. Specifically,
we show some of the visual comparisons for oriented object
detection between the baseline and the proposed method on
HRSC2016 in Fig. 8. We also show some visualized com-

Fig. 8. Some visualized comparison of object detection with OBB on
HRSC2016. The figures with blue boxes are the results of the baseline
(RoI-transformer + faster R-CNN) and pink boxes are the results of our
proposed DEA-Net.

parisons for horizontal object detection on DOTA in Fig. 9.
The visualization results show that our proposed method can
achieve better performance both in the case of ships with
OBBs and objects with HBBs.

V. CONCLUSION AND FUTURE WORK

In this work, a simple yet effective DEA module was
proposed to facilitate the learning of small objects. We imple-
mented our DEA module on the standard object detection
backbone network with an FPN (i.e., DEA-Net) and conducted
extensive experiments on both oriented and horizontal object
detection in aerial images. Experimental results on the chal-
lenging DOTA and HRSC2016 indicated that our proposed
DEA-Net could achieve SOTA performance in accuracy with
moderate computational overhead.

In the future, we will extend the proposed DEA-Net to a
broader range of natural scenes. Besides, exploring how to use
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Fig. 9. Some visualized comparisons of object detection with HBB on DOTA.
The figures with blue boxes are the results of the baseline (faster R-CNN) and
pink boxes are the results of our proposed DEA-Net.

DEA-Net for semantic and panoramic segmentation is also a
promising direction.
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